Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation.

Identifieur interne : 000660 ( Main/Exploration ); précédent : 000659; suivant : 000661

Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation.

Auteurs : Jean-François Jacques [Canada] ; Alexandre Mercier [Canada] ; Ariane Brault [Canada] ; Thierry Mourer [Canada] ; Simon Labbé [Canada]

Source :

RBID : pubmed:24897379

Descripteurs français

English descriptors

Abstract

Iron is required for several metabolic functions involved in cellular growth. Although several players involved in iron transport have been identified, the mechanisms by which iron-responsive transcription factors are controlled are still poorly understood. In Schizosaccharomyces pombe, the Fep1 transcription factor represses genes involved in iron acquisition in response to high levels of iron. In contrast, when iron levels are low, Fep1 becomes inactive and loses its ability to associate with chromatin. Although the molecular basis by which Fep1 is inactivated under iron starvation remains unknown, this process requires the monothiol glutaredoxin Grx4. Here, we demonstrate that Fra2 plays a role in the negative regulation of Fep1 activity. Disruption of fra2+ (fra2Δ) led to a constitutive repression of the fio1+ gene transcription. Fep1 was consistently active and constitutively bound to its target gene promoters in cells lacking fra2+. A constitutive activation of Fep1 was also observed in a php4Δ fra2Δ double mutant strain in which the behavior of Fep1 is freed of its transcriptional regulation by Php4. Microscopic analyses of cells expressing a functional Fra2-Myc13 protein revealed that Fra2 localized throughout the cells with a significant proportion of Fra2 being observed within the nuclei. Further analysis by coimmunoprecipitation showed that Fra2, Fep1 and Grx4 are associated in a heteroprotein complex. Bimolecular fluorescence complementation experiments brought further evidence that an interaction between Fep1 and Fra2 occurs in the nucleus. Taken together, results reported here revealed that Fra2 plays a role in the Grx4-mediated pathway that inactivates Fep1 in response to iron deficiency.

DOI: 10.1371/journal.pone.0098959
PubMed: 24897379
PubMed Central: PMC4045890


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation.</title>
<author>
<name sortKey="Jacques, Jean Francois" sort="Jacques, Jean Francois" uniqKey="Jacques J" first="Jean-François" last="Jacques">Jean-François Jacques</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mercier, Alexandre" sort="Mercier, Alexandre" uniqKey="Mercier A" first="Alexandre" last="Mercier">Alexandre Mercier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brault, Ariane" sort="Brault, Ariane" uniqKey="Brault A" first="Ariane" last="Brault">Ariane Brault</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mourer, Thierry" sort="Mourer, Thierry" uniqKey="Mourer T" first="Thierry" last="Mourer">Thierry Mourer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Simon" sort="Labbe, Simon" uniqKey="Labbe S" first="Simon" last="Labbé">Simon Labbé</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24897379</idno>
<idno type="pmid">24897379</idno>
<idno type="doi">10.1371/journal.pone.0098959</idno>
<idno type="pmc">PMC4045890</idno>
<idno type="wicri:Area/Main/Corpus">000624</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000624</idno>
<idno type="wicri:Area/Main/Curation">000624</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000624</idno>
<idno type="wicri:Area/Main/Exploration">000624</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation.</title>
<author>
<name sortKey="Jacques, Jean Francois" sort="Jacques, Jean Francois" uniqKey="Jacques J" first="Jean-François" last="Jacques">Jean-François Jacques</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mercier, Alexandre" sort="Mercier, Alexandre" uniqKey="Mercier A" first="Alexandre" last="Mercier">Alexandre Mercier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brault, Ariane" sort="Brault, Ariane" uniqKey="Brault A" first="Ariane" last="Brault">Ariane Brault</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mourer, Thierry" sort="Mourer, Thierry" uniqKey="Mourer T" first="Thierry" last="Mourer">Thierry Mourer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Simon" sort="Labbe, Simon" uniqKey="Labbe S" first="Simon" last="Labbé">Simon Labbé</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec</wicri:regionArea>
<wicri:noRegion>Quebec</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Nucleus (metabolism)</term>
<term>Chromatin Immunoprecipitation (MeSH)</term>
<term>Fluorescent Antibody Technique, Indirect (MeSH)</term>
<term>GATA Transcription Factors (antagonists & inhibitors)</term>
<term>GATA Transcription Factors (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Iron (deficiency)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Protein Binding (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (growth & development)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (antagonists & inhibitors)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Facteurs de transcription GATA (antagonistes et inhibiteurs)</term>
<term>Facteurs de transcription GATA (génétique)</term>
<term>Fer (déficit)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Immunoprécipitation de la chromatine (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (antagonistes et inhibiteurs)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Schizosaccharomyces (croissance et développement)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Technique d'immunofluorescence indirecte (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>GATA Transcription Factors</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>GATA Transcription Factors</term>
<term>RNA, Messenger</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Facteurs de transcription GATA</term>
<term>Protéines de Schizosaccharomyces pombe</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Promoter Regions, Genetic</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Facteurs de transcription GATA</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Régions promotrices (génétique)</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Schizosaccharomyces</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Noyau de la cellule</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatin Immunoprecipitation</term>
<term>Fluorescent Antibody Technique, Indirect</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Immunoprecipitation</term>
<term>Protein Binding</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Immunoprécipitation</term>
<term>Immunoprécipitation de la chromatine</term>
<term>Liaison aux protéines</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Technique d'immunofluorescence indirecte</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron is required for several metabolic functions involved in cellular growth. Although several players involved in iron transport have been identified, the mechanisms by which iron-responsive transcription factors are controlled are still poorly understood. In Schizosaccharomyces pombe, the Fep1 transcription factor represses genes involved in iron acquisition in response to high levels of iron. In contrast, when iron levels are low, Fep1 becomes inactive and loses its ability to associate with chromatin. Although the molecular basis by which Fep1 is inactivated under iron starvation remains unknown, this process requires the monothiol glutaredoxin Grx4. Here, we demonstrate that Fra2 plays a role in the negative regulation of Fep1 activity. Disruption of fra2+ (fra2Δ) led to a constitutive repression of the fio1+ gene transcription. Fep1 was consistently active and constitutively bound to its target gene promoters in cells lacking fra2+. A constitutive activation of Fep1 was also observed in a php4Δ fra2Δ double mutant strain in which the behavior of Fep1 is freed of its transcriptional regulation by Php4. Microscopic analyses of cells expressing a functional Fra2-Myc13 protein revealed that Fra2 localized throughout the cells with a significant proportion of Fra2 being observed within the nuclei. Further analysis by coimmunoprecipitation showed that Fra2, Fep1 and Grx4 are associated in a heteroprotein complex. Bimolecular fluorescence complementation experiments brought further evidence that an interaction between Fep1 and Fra2 occurs in the nucleus. Taken together, results reported here revealed that Fra2 plays a role in the Grx4-mediated pathway that inactivates Fep1 in response to iron deficiency. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24897379</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation.</ArticleTitle>
<Pagination>
<MedlinePgn>e98959</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0098959</ELocationID>
<Abstract>
<AbstractText>Iron is required for several metabolic functions involved in cellular growth. Although several players involved in iron transport have been identified, the mechanisms by which iron-responsive transcription factors are controlled are still poorly understood. In Schizosaccharomyces pombe, the Fep1 transcription factor represses genes involved in iron acquisition in response to high levels of iron. In contrast, when iron levels are low, Fep1 becomes inactive and loses its ability to associate with chromatin. Although the molecular basis by which Fep1 is inactivated under iron starvation remains unknown, this process requires the monothiol glutaredoxin Grx4. Here, we demonstrate that Fra2 plays a role in the negative regulation of Fep1 activity. Disruption of fra2+ (fra2Δ) led to a constitutive repression of the fio1+ gene transcription. Fep1 was consistently active and constitutively bound to its target gene promoters in cells lacking fra2+. A constitutive activation of Fep1 was also observed in a php4Δ fra2Δ double mutant strain in which the behavior of Fep1 is freed of its transcriptional regulation by Php4. Microscopic analyses of cells expressing a functional Fra2-Myc13 protein revealed that Fra2 localized throughout the cells with a significant proportion of Fra2 being observed within the nuclei. Further analysis by coimmunoprecipitation showed that Fra2, Fep1 and Grx4 are associated in a heteroprotein complex. Bimolecular fluorescence complementation experiments brought further evidence that an interaction between Fep1 and Fra2 occurs in the nucleus. Taken together, results reported here revealed that Fra2 plays a role in the Grx4-mediated pathway that inactivates Fep1 in response to iron deficiency. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jacques</LastName>
<ForeName>Jean-François</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mercier</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brault</LastName>
<ForeName>Ariane</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mourer</LastName>
<ForeName>Thierry</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Labbé</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C459859">Fep1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="N">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019084" MajorTopicYN="N">Fluorescent Antibody Technique, Indirect</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24897379</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0098959</ArticleId>
<ArticleId IdType="pii">PONE-D-14-11613</ArticleId>
<ArticleId IdType="pmc">PMC4045890</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eukaryot Cell. 2009 Apr;8(4):649-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jul 1;15(13):3377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 24;284(30):20249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 20;408(4):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 6;330(2):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2010;470:759-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20946835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Jan;14(1):214-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2007 Sep;24(9):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11956219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Sep;21(18):6270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11509669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 May;10(5):629-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 25;278(30):27636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(8):e11964</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20694150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Mar;7(3):493-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):659-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24074556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Jun;11(6):806-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2003 Sep;62(4):316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12759789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):25146-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Aug 1;31(15):4332-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12888492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2010 Dec;11(8):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Dec;32(24):4998-5008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 Jul 27;307(1):108-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1322323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Nov 1;40(20):10240-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22965128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2006 Jan;152(Pt 1):209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Nov;5(11):1866-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jan;7(1):20-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2012 Feb 06;3:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22347220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 Aug 5;23(15):R642-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23928078</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Jacques, Jean Francois" sort="Jacques, Jean Francois" uniqKey="Jacques J" first="Jean-François" last="Jacques">Jean-François Jacques</name>
</noRegion>
<name sortKey="Brault, Ariane" sort="Brault, Ariane" uniqKey="Brault A" first="Ariane" last="Brault">Ariane Brault</name>
<name sortKey="Labbe, Simon" sort="Labbe, Simon" uniqKey="Labbe S" first="Simon" last="Labbé">Simon Labbé</name>
<name sortKey="Mercier, Alexandre" sort="Mercier, Alexandre" uniqKey="Mercier A" first="Alexandre" last="Mercier">Alexandre Mercier</name>
<name sortKey="Mourer, Thierry" sort="Mourer, Thierry" uniqKey="Mourer T" first="Thierry" last="Mourer">Thierry Mourer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000660 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000660 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24897379
   |texte=   Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24897379" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020